ENTRANCE TEST FOR Ph.D. PROGRAMME, 2023

COMPUTER SCIENCE

Time: Three Hours				7.5	100 15 1
Time: Timee nours				Maximiim	: 100 Marks
	A Company of the Company		a see		. TOO ILLUITED

Part A

Answer all questions. Each question carries 1 mark.

noos	e tne cor	rect answer from the choices giv	en:	
1.	Which	of the following is NOT a valid l	ogical co	nnective ?
	(a)	OR.	(b)	XOR.
	(c)	NAND.	(d)	INVERT.
2.	Give is	the negation of the statement "A	All birds	can fly"?
	(a)	All birds cannot fly.	(b)	No birds can fly.
	(c)	Some birds cannot fly.	(d)	Some birds can fly.
3.	Which	of the following is a tautology?		
	(a)	POR~P.	(b)	P AND ~P.
: .	(c)	P AND P.	(d)	P OR P.
4.	What is	s the minimum number of edges	that a co	onnected graph with n vertices must have?
	(a)	n-1.	(b)	n.
	(c)	n+1.	(d)	n(n-1)/2.
5 .	Ina bip	partite graph, the maximum num	nber of e	dges is achieved when:
	(a)	Both parts have the same num	ber of ve	rtices.
	(b)	One part has one more vertex	than the	other.
	(c)	One next has two more vertices	c than th	a other

(d) The number of vertices in each part is irrelevant to the maximum number of edges.

Turn over

- 6. Which of the following statements is true regarding Euler's formula for planar graphs?
 - (a) It states that the number of edges minus the number of vertices plus the number of faces is always 2.
 - (b) It states that the number of edges minus the number of vertices plus the number of faces is always 0.
 - (c) It states that the number of vertices minus the number of edges plus the number of faces is always 2.
 - (d) It states that the number of vertices plus the number of edges minus the number of faces is always 2.
- 7. A graph is said to be Hamiltonian if:
 - (a) It contains a Hamiltonian cycle. (b) It contains a Hamiltonian path.
 - (c) It has no Hamiltonian cycles. (d) It has no Hamiltonian paths.
- 8. Which of the following is a property of a planar graph?
 - (a) It can be drawn in three dimensions.
 - (b) It can be drawn without any crossing edges.
 - (c) It has no cycles.
 - (d) It has no vertices of degree one
- 9. Which of the following automata models is capable of recognizing context-sensitive languages?
 - (a) Finite state automata (FSA).
 - (b) Pushdown automata (PDA).
 - (c) Non-deterministic finite automata (NFA).
 - (d) Turing machines.
- 10. Which of the following automata models is not closed under complementation?
 - (a) Finite state automata (FSA).
 - (b) Non-deterministic finite automata (NFA).
 - (c) Deterministic finite automata (DFA).
 - (d) Pushdown automata (PDA).

11.	Which	of the following is a property of a d	eterm	inistic finite automaton (DFA)?				
	(a)	It has only one final state.						
	(b)	(b) It can recognize all context-free languages.						
	(c)	(c) It can recognize all context-sensitive languages.						
• .	(d)	It has a stack to store its state.						
12.	Which	of the following is true regarding t	he pu	mping lemma for regular languages?				
	(a)	It can be used to prove that a give	en lan	iguage is regular.				
•	(b)	It can be used to prove that a give	en lan	guage is context-free.				
	(c)	It can be used toprove that a give	n lan	guage is context-sensitive.				
	(d)	It can be used to prove that a give	en lan	guage is not regular.				
13.		of the following is a type of microprocessor?	ocess	or memory that is located on the same chip as the				
	(a)	ROM.	(b)	RAM.				
	(c)	Cache.	(d)	Secondary storage.				
14.		register is used to hold the address rocessor?	of the	e next instruction to be executed in the Intel 8086				
	(a)	P .	(b)	SP.				
	(c)	BP.	(d)	SI.				
15.		of the following is a type of address in the instruction itself?	sing n	node in which the operand is specified as a direct				
	(a)	Immediate.	(b)	Direct.				
	(c)	Indirect.	(d)	Indexed.				
16.		is the technique used to improve the tions simultaneously?	e perf	ormance of microprocessors by executing multiple				
	(a)	Pipelining.	(b)	Caching.				
	(c)	Superscalar processing.	(d)	Branch prediction.				

17.	Give th	e correct order of memory hierarchy from smallest to largest?
	(a)	Cache, register, main memory, secondary storage.
	(b)	Register, cache, main memory, secondary storage.
	(c)	Secondary storage, main memory, cache, register.
	(d)	Register, main memory, cache, secondary storage.
18.		is the technique used to increase the amount of work done by a single processor by overlapping cution of instructions ?
	(a)	Parallel processing. (b) Pipelining.
	(c)	Caching. (d) Superscalar processing.
19.	In whi	ch memory organization, each memory cell has a unique address and can be accessed 7?
	(a)	Random access memory (RAM).
	(b)	Read-only memory (ROM).
	(c)	Programmable logic array (PLA).
	(d)	Content-addressable memory (CAM).
20.	Which	process converts a program written in a high-level language into machine language?
	(a)	Assembly. (b) Compilation.
	(c)	Interpretation. (d) Linking.
21.		technique reduces the number of memory accesses by storing frequently accessed data in a fast memory ?
	(a)	Caching. (b) Pipelining.
	(c)	Superscalar processing. (d) Instruction level parallelism (ILP).
22.		of the following specifies the structure of a database, including tables, fields, and relationships n tables ?
	(a)	Query language.
	(b)	Data definition language (DDL).
	(c)	Data manipulation language (DML).
*.	(d)	Transaction processing system (TPS).

23.		is a database operation that combines rows from two or more tables based on a related between them?
	(a)	Select. (b) Join.
	(c)	Group by. (d) Union.
24.	What i	s a trigger in a database?
	(a)	A type of constraint that enforces data integrity rules.
	(b)	A stored procedure that is automatically executed when a certain event occurs.
	(c)	A way to group related data together in a database.
	(d)	A way to optimize a database for performance.
25.	What i	s a transaction in a database ?
	(a)	A group of related SQL statements that are executed together as a single unit.
	(b)	A set of rules that govern the relationships between tables in a database.
	(c)	A process that automatically backups up a database at regular intervals
	(d)	A way to categorize and organize data in a database.
26.	What i	s normalization in database design?
• .	(a)	The process of removing redundant data from a database.
	(b)	The process of breaking down a complex database into smaller, more manageable parts.
	(c)	The process of ensuring data is consistent and accurate across multiple tables.
	(d)	The process of optimizing a database for performance.
27.	In a re	lational database, what is a foreign key?
	(a)	A key that uniquely identifies a row in a table.
	(b)	A key that is used to link two tables together.
	(c)	A key that is used to enforce data integrity rules.
	(d)	A key that is used to group related data together.
28.	Which networ	layer of the OSI model is responsible for routing and forwarding data across different ks?
	(a)	Physical layer. (b) Data link layer.
÷.	(c)	Network layer. (d) Transport layer. Turn over

29.	Which	protocol is used for email transmiss	ion ov	er the Internet?
·	(a)	нттр.	(b)	SMTP.
	(c)	FTP.	(d)	Telnet.
30.	Which	of the following is a characteristic o	f UDI	?
	(a)	Connection-oriented.	(b)	Reliable delivery.
	(c)	Error recovery.	(d)	Unreliable delivery.
31.	Which networ		ol use	d for encrypting data transmitted over a
	(a)	SSL.	(b)	SMTP.
	(c)	нттр.	(d)	FTP.
32.	Which	of the following topologies allows fo	r red	undancy in case of a network failure?
	(a)	Bus.	(b)	Ring.
	(c)	Star.	(d)	Mesh.
33.	Which	of the following technique ensures	data (confidentiality in a network?
	(a)	Encryption.	(b)	Authentication.
	(c)	Authorization.	(d)	Intrusion Detection.
34.	Which	scheduling algorithm gives preferen	nce to	processes with a shorter burst time?
	(a)	First-Come, First-Served (FCFS)		
	(b)	Shortest Job First (SJF).		
	(c)	Priority Scheduling.		
	(d)	Round Robin Scheduling.		
35.	Which	mechanism provides protection and	l secu	rity in an operating system ?
	(a)	Virtual Memory.	(b)	Paging.
	(c)	Segmentation.	(d)	Access Control.
36.	Which	of the following is a technique used	for h	andling multiple CPUs in an operating system?
	(a)	Multitasking.	(b)	Multiprocessing.
	(c)	Multithreading.	(d)	All of the above.

37.	Which	technique tests software function	ality ar	nd user interface?
	(a)	Unit testing.	(b)	Integration testing.
	(c)	System testing.	- (d)	Acceptance testing.
38.	Which	technique is used for modeling so	ftware	design and architecture ?
	(a)	Use case diagrams.	(b)	Class diagrams.
	(c)	Sequence diagrams.	(d)	UML diagrams.
39.		technique is used for measuring s hrough a program?	oftware	e complexity based on the number of independent
	(a)	Code coverage.	(b)	Cyclomatic complexity.
	(c)	Code review.	(d)	Defect density.
40.	Which	of the following is a type of symme	etric er	ncryption algorithm?
	(a)	RSA.	(b)	Diffie-Hellman.
	(c)	AES.	(d)	Elliptic curve.
41.	Which	technique is used for verifying the	e authe	enticity of a digital message?
	(a)	Encryption.	(b)	Decryption.
	(c)	Digital signature.	(d)	Hashing.
42 .	Which messag		ed for 1	hiding the existence of a message within another
	(a)	Steganography.	(b)	Cryptography.
	(c)	Hashing.	(d)	Digital signature.
43.	Which	technique used for securely excha	inging	keys between two parties?
•	(a)	Key exchange.	(b)	Digital signature:
-	(c)	Hashing.	(d)	Encryption.
44.	Which	is a common notation used to exp	ress the	e time complexity of an algorithm?
	(a)	Big O notation.	(b)	Small O notation.
	(c)	Theta notation.	(d)	Omega notation.

45 .	Which	is the worst-case time complex	ity of linea	r search algorith	m?	
	(a)	O (1).	(b)	$O(\log n)$.		
•	(c)	O(n).	(d)	$O(n^2)$.		
46.	Which	of the following is the worst-ca	se time co	mplexity of binar	y search algorithm?	rain an in the second of the s
	(a)	O (1).	(b)	$O(\log n)$.	•	
	(c)	O(n).	(d)	$O(n^2)$.		
47.	Which	of the following is a way to im	prove the t	ime complexity o	f an algorithm?	
	(a)	Increase the number of input	paramete	rs.		
•	(b)	Increase the number of instr	uctions exc	ecuted.		
	(c)	Use a more efficient algorithm	n.			
	(d)	Use more memory.				
48.	Which	of the following is a set of prin	ne number	s ?		•
√ . √.	(a)	{1, 2, 3, 4, 5}.	(b)	{2, 4, 6, 8, 10}.		
	(c)	{3, 5, 7, 11, 13}.	(d)	{1, 3, 5, 7, 9}.		
49.	In how	many ways can 5 people be a	rranged in	a line?		
	(a)	20.	(b)	60.		
	(c)	120.	(d)	240.		
50 .	What p	probability of rolling a sum of 7	with two	fair dice ?		
, ·	(a)	1/6.	(b)	1/36.		
	(c)	1/12.	(d)	1/18.		
					(50 × 1 :	= 50 marks
-	e . •j.					
1						

Part B

Answer any ten questions. Each question carries 5 marks.

- 51. Describe the steps involved in writing a scientific paper. What are some common pitfalls to avoid, and how do you ensure that your paper is both clear and compelling?
- 52. Briefly explain the problem discussed in a research paper that you studied. How is it solved in that paper?
- 53. How are quantitative research methods different from qualitative methods? Explain.
- 54. What do you mean by dependent variable and independent variable?
- 55. What is Sampling? How is it done?
- 56. Which are the various measures of central tendency? Explain their significance in research?
- 57. What is linear programming? What are its applications?
- 58. What do you understand by ethics in research?
- 59. What is Chi-square testing? Where and how is it used?
- 60. What do you mean by data analysis? Mention some techniques used for data analysis.
- 61. Show how a computer network can be represented mathematically.
- 62. What do you mean by complexity of an algorithm?
- 63. Describe breadth-first search and depth-first search algorithms.
- 64. Mention a few applications of Machine Learning.

 $(10 \times 5 = 50 \text{ marks})$

