ENTRANCE TEST FOR Ph.D. PROGRAMME, 2023

PHYSICS

Time	:Th	ree	Hours
------	-----	-----	-------

Maximum: 100 Marks

Part A

Answer all questions

Ch

		Each question can	rries 1 mark.		
e the cor	rect answer from the	choices given :			
	and the second s	-	rink by 1 %, its ma	ss remaining the s	ame, the
(A)	Increase by 4 %.	(B)	Decrease by 1 %.		
(C)	Not change at all.	(D)	Increase by 2 %.		
			is equal to a^2 , whe	re a is a constant,	then the
(A)	$a^2/2$.	(B)	πa^2 .		
(C)	$2\pi a^2$.	(D)	$4\pi a^2$.		
function		-∞		and $\delta(x)$ is the Di	rac delta
(C)	Cos k.				
		s perpendicular t	so both $(\hat{i}+2\hat{j}-3\hat{k})$	and $(-\hat{i}+\hat{j}-2\hat{k})$	from the
(A)	$\hat{i}+3\hat{j}+2\hat{k}.$	(B)	$2\hat{i}+3\hat{j}+\hat{k}.$		
(C)	$-\hat{i}+5\hat{j}+3\hat{k}.$	(D)	$\hat{i} + \hat{j} + \hat{k}$.		
	· · · · · · · · · · · · · · · · · ·			T	l returns
(A)	Zero.	(B)	g/4.		
(C)	g/2.	(D)	g.		
	Suppo acceler (A) (C) If the total c (A) (C) The variation (A) (C) Identification (A) (C) A part back. T (A)	Suppose the radius of the acceleration due to gravity (A) Increase by 4 %. (C) Not change at all. If the differential cross-sectotal cross-section will be (A) $a^2/2$. (C) $2\pi a^2$. The value of the integral function is given by: (A) Zero. (C) Cos k . Identify the vector that is following: (A) $\hat{i} + 3\hat{j} + 2\hat{k}$. (C) $-\hat{i} + 5\hat{j} + 3\hat{k}$. A particle thrown upward	e the correct answer from the choices given: Suppose the radius of the earth were to she acceleration due to gravity would: (A) Increase by 4 %. (B) (C) Not change at all. (D) If the differential cross-section in scattering total cross-section will be: (A) $a^2/2$. (B) (C) $2\pi a^2$. (D) The value of the integral $\int_{-\infty}^{\infty} (\delta(x)) e^{ikx} dx$ when function is given by: (A) Zero. (B) (C) Cos k . (D) Identify the vector that is perpendicular to following: (A) $\hat{i} + 3\hat{j} + 2\hat{k}$. (B) (C) $-\hat{i} + 5\hat{j} + 3\hat{k}$. (D) A particle thrown upwards from earth's suback. The acceleration of the particle at its (A) Zero. (B)	Suppose the radius of the earth were to shrink by 1 %, its matacceleration due to gravity would: (A) Increase by 4 %. (B) Decrease by 1 %. (C) Not change at all. (D) Increase by 2 %. If the differential cross-section in scattering is equal to a^2 , when total cross-section will be: (A) $a^2/2$. (B) πa^2 . (C) $2\pi a^2$. (D) $4\pi a^2$. The value of the integral $\int_{-\infty}^{\infty} (\delta(x)) e^{ikx} dx$ where k is a constant function is given by: (A) Zero. (B) $\sin k$. (C) Cos k . (D) $-ik$. Identify the vector that is perpendicular to both $(\hat{i} + 2\hat{j} - 3\hat{k})$ following: (A) $\hat{i} + 3\hat{j} + 2\hat{k}$. (B) $2\hat{i} + 3\hat{j} + \hat{k}$. (C) $-\hat{i} + 5\hat{j} + 3\hat{k}$. (D) $\hat{i} + \hat{j} + \hat{k}$. A particle thrown upwards from earth's surface reaches a hereback. The acceleration of the particle at its highest point of reaches. (A) Zero. (B) $g/4$.	e the correct answer from the choices given: Suppose the radius of the earth were to shrink by 1 %, its mass remaining the sacceleration due to gravity would: (A) Increase by 4 %. (B) Decrease by 1 %. (C) Not change at all. (D) Increase by 2 %. If the differential cross-section in scattering is equal to a^2 , where a is a constant, total cross-section will be: (A) $a^2/2$. (B) πa^2 . (C) $2\pi a^2$. (D) $4\pi a^2$. The value of the integral $\int_{-\infty}^{\infty} (\delta(x)) e^{ikx} dx \text{ where } k \text{ is a constant and } \delta(x) \text{ is the Diffunction is given by:}$ (A) Zero. (B) $\sin k$. (C) Cos k . (D) $-ik$. Identify the vector that is perpendicular to both $(\hat{i} + 2\hat{j} - 3\hat{k})$ and $(-\hat{i} + \hat{j} - 2\hat{k})$ following: (A) $\hat{i} + 3\hat{j} + 2\hat{k}$. (B) $2\hat{i} + 3\hat{j} + \hat{k}$. (C) $-\hat{i} + 5\hat{j} + 3\hat{k}$. (D) $\hat{i} + \hat{j} + \hat{k}$. A particle thrown upwards from earth's surface reaches a height of 100 m. and back. The acceleration of the particle at its highest point of reach has the value: (A) Zero. (B) $g/4$.

	is a constant, then its orbita	l angular mome	entum abou	it the centre of	the circle is:
	(A) 2RKm.	(B)	$\sqrt{2\text{RK}m}$.		
	(C) \sqrt{RKm} .	(D)	RKm.		
7.	A rigid body consisting of the fixed to be at rest. Which of C?		• •		

- (B) C can move the circumference of a circle of constant radius with line joining A, B passing normally through the centre of the circle.
- C can move along the line joining A, B.
- C can move parallel to the line joining A, B.
- 8. Two masses of value m that are moving towards each other with equal speeds of value 0.6 c collide head on and sticking together form a bigger particle of mass M. Then the value of M is equal to:
 - (B) $\frac{5}{2}m$. (A) 2 m. (D) $\frac{25}{8}m$. (C) $\frac{9}{4}m$.
- Charge Q is uniformly distributed in a sphere of radius R. The divergence of an electric field $\vec{E} \rho$ inside the spher is (in Gaussian units):
 - (A) $\frac{4\pi Q}{R^3}$. (B) $\frac{3Q}{R^3}$. (C) $\frac{4\pi R^3}{3}$. (D) $4\pi Q$.
- 10. Lienard-Wiechert potentials are the:
 - Vector potentials due to a moving point charge.
 - Scalar potentials due to a moving point charge.
 - Vector and scalar potentials due to a static point charge.
 - Vector and scalar potentials due to a moving point charge.

(A) 3:2.

(C) 4:9.

11. Electric fields associated with the two electromagnetic waves are in the ratio 3:2. Then the energy transported per unit area per unit time by these waves are in the ratio:

(B) 9:4.

(D) 2:3.

12. A 3-dimensional harmonic oscillator is in thermal equilibrium with a heat bath at

Turn over

	temper	rature T. The averag	e total energy	of the oscillator is:		
	(A)	$\frac{1}{2}$ KT.	(В) 3 KT.		
	(C)	KT.	(D) $\frac{3}{2}$ KT.		
13.	The ec	quation of state of a	gas with inte	rnal energy U is give	$=$ n by PV $=\frac{1}{3}$ U	· Then the
		onding equation for			= 1	
		$PV^{2/3} = constant.$ $PV^{4/3} = constant.$) $PV^{1/3} = constant.$) $PV^{3/5} = constant.$		
14.	If a PN then	N junction is formed	having a juncti	on potential $V_{\mathbf{J}}$ and a	depletion regio	n width W,
	(A)	V _J α W.	` (B) $V_J \propto W^{1/2}$.		
	(C)	$V_J \alpha W^2$.	(D) $V_J \propto W^{3/2}$.		
15 .	A phot	on gas with internal	energy U is de	escribed by the followi	ng equation of	state:
	(A)	$PV = \frac{1}{3}U.$	(В	$) PV = \frac{2}{3}U.$		
	(C)	$PV = \frac{2}{5}U.$	(D) PV = U .		
16.		amp amplifier has a . At what gain will it	_	the inverting configured the of 10 MHz?	ration and a ba	ındwidth of
	(A)	1.	(B) 20.		
	(C)	100.	(D) 10 ⁵ .		
		The second section of the second				. *

17.	–	ude of $4 V$ with a rise time of 3		f 500 mV has to be amplified to a peak to peak less. The op-amp used should have a minimum
	(A)	0.5 V/μs.	(B)	0.75 V/μs.
	(C)	0.8 V/μs.	(D)	1.1 V/µs.
18.		eal differentiator using an op-ancy varying as:	amp h	as a high frequency gain above its maximum
• • •	(A)	+ 20 db/decade.	(B)	- 20 db/decade.
	(C)	10 db/decade.	(D)	- 10 db/decade.
19.		order low-pass filter has a pas cuit at 100 kHz in dB is :	s band	l gain of 10 and a cut-off of 10 kHz. The gain of
	(A)	17 db.	(B)	1.0 db.
	(C)	– 20 db.	(D)	-3 db.
20.				bit D/A converter. If the current through the current through the MSB resistor?
	(A)	40 μΑ.	(B)	2.5 μΑ.
	(C)	160 μΑ.	(D)	80 μΑ.
21.	Most r	netals used for temperature me	easure	ments in the form of a resistance thermometer
	(A)	Negative resistance characte	ristic.	
	(B)	Positive temperature co-effici	ient of	f resistance.
	(C)	A non-linear resistance varia	tion.	
-	(D)	Negative temperature co-effic	cient o	of resistance.
22.	Which	of the following is not part of	a lock	-in amplifier ?
	(A)	Phase sensitive detector.	(B)	Integrator.
	(C)	Differentiator.	(D)	Small signal amplifier.
23.	Hetero	junction devices are made up o	of GaA	as and AlGaAs because they have :
	(A)	Different bandgap but similar	r cryst	tal structure.
	(B)	Same bandgap and similar cr	ystal s	structure.
	(C)	Same bandgap but different of	rystal	structure.
	(D)	Different bandgap and different	ent cry	ystal structure.
			:	
			f	

24.	In the	Born-Oppenheimer approximation, the following assumption is made;
	(A)	The nuclei also move in relation to the more fast moving electrons.
	(B)	The nuclei move with the same velocity as the fast-moving electrons.
	(C)	The nuclei move faster than the fast moving electrons.
	(D)	The nuclei remain stationary in relation to the fast moving electrons.
25.	In the	normal Zeeman effect, the middle spectal line is:
	(A)	Circularly polarized. (B) Elliptically polarized.
	(C)	Not polarized. (D) Plane polarised.
26.		the following elements shows the doublet spectral features like the alkalies. Identify the following :
	(A)	Singly ionised Boron. (B) Singly ionised Aluminium.
	(C)	Singly ionised Barium. (D) Singly ionised Oxygen.
27.		atio of spontaneous emissions process probability to the stimulated emission ility is proportional to:
•	(A)	Square root of the transition frequency.
•	(B)	Reciprocal of the transition frequency.
	(C)	Square of the transition frequency.
*	(D)	Cube of the transition frequency.
28.	In a b. distanc	c.c. lattice with lattice constant a , the body centered position from the origin is at a see of:
	(A)	$\sqrt{2} a$. (B) $\frac{\sqrt{3a}}{2}$.
	(C)	$\frac{\sqrt{3}}{2}a.$ (B) ${2}$. $\frac{\sqrt{3}}{4}a.$
29.		abic crystal, the interplanar spacing of (hkl) planes is represented by d_{hkl} . Which of lowing is true ?
	(A)	$d_{111} > d_{100}.$ (B) $d_{110} > d_{111}.$
	(C)	$d_{111} > d_{210}$. (D) $d_{200} > d_{111}$.
30.	Madel	ung energy is calculated in :
	(A)	Inert gas crystals. (B) Covalent crystals.
	(C)	Hydrogen bonded crystals. (D) Ionic crystals.
		Turn over

31.		rystalline solid with N number of unit cells, the number of allowed independent n modes of a branch is:
	(A)	N. (B) 2N.
	(C)	$\frac{N}{2}$. (D) N^2 .
32.	Which	of the following is not true?
	A supe	erconductor is characterized by:
	(A)	Persistent current. (B) Perfect diamagnetism.
	(C)	Existence of energy gap. (D) Heat capacity linear in temperature.
33.	The ha	alf life of a radio active sampe is 20 days. This means that :
•	(A)	The substance completely disintegrates in 40 days.
	(B)	The substance completely disintegrates in 80 days.
	(C)	1/8 part of the substance disintegrates in 60 days.
	(D)	7/8 part of the substance disintegrates in 60 days.
34.	The fu	nction of a moderator in a nuclear reactor is:
	(A)	To absorb unwanted neutrons.
	(B)	To slowdown the fast neutrons to secure more effective hits on other nuclei.
	(C)	To decrease the number of fissile nuclei.
	(D)	To increase the number of fissile nuclei.
35.	The m	ass defect of an atom divided by its mass number is known as:
,	(<u>A</u>)	Binding energy. (B) Packing fraction.
	(C)	Asymmetric energy. (D) Surface energy.
36.		nergy dependence of the cross-section of a reaction between two particles close to sonance energy E is described by :
	(A)	Bethe-Bloch formula. (B) Breit-Wigner formula.
	(C)	Gamow-Teller formula. (D) Weizsaker formula.
37.	Micro	wave spectroscopy is used to get information about:
	(A)	Accurate bond length and angles.
	(B)	Electric dipole moments.
	(C)	Centrifugal distortion constant.
	(D)	All of these.

- 38. In electrodeposition method, which electrode is used to close the current circuit in the electrochemical cell:
 - (A) Counter electrode.
- (B) Working electrode.
- (C) Reference electrode.
- (D) Ground electrode.
- 39. Which of the following is not a type of modulation scheme in RF systems?
 - (A) Shift Modulation (SM).
- (B) Amplitude Modulation (AM).
- (C) Frequency Modulation (FM).
- (D) Phase Modulation (PM).
- 40. The main stages for film formation in spin coatig technique are :
 - (A) Deposition, spin up, spin off and pyrolysis.
 - (B) Deposition, spin up, spin off and sublimation.
 - (C) Deposition, spin up, spin off and evaporation.
 - (D) Deposition, spin up, spin off and coating.
- 41. Which spectroscopy is based on the interaction of light with the chemical bonds within a material?
 - (A) Atomic Absorption Spectroscopy (AAS).
 - (B) Raman Spectroscopy.
 - (C) Nuclear Magnetic Resonance (NMR) Spectroscopy.
 - (D) Flame Spectroscopy.
- 42. The magnetometer whose working principle is characterized by Lorentz force is termed as:
 - (A) Induction magnetometer.
 - (B) Magnetic magnetometer.
 - (C) Magneto resisitive magnetometer.
 - (D) SQUID magnetometer.
- 43. An OR gate defined in positive logic converts into:
 - (A) An AND gate in negative logic. (B) A NAND gate in negative logic.
 - (C) A NOR gate in negative logic. (D) A NOT gate in negative logic.
- 44. Very large input resistance of MOSFET compared to JFET is due to:
 - (A) Formation of junction.
 - (B) Biasing conditions.
 - (C) Formation of capacitor of high dielectric constant.
 - (D) Majority carriers.

 $(50 \times 1 = 50 \text{ marks})$

			O	O 0200
45 .	Stock a	and Anti-stock lines are observed	l in :	
	(A)	Infrared spectrum.	(B)	Fluorescent spectrum.
	(C)	Raman spectrum.	(D)	Mossbauer spectrum.
46.	tube is			nere is a time during which the Geiger Muller e is temporarily unable to detect the ionizing
	(A)	Recovery time.	(B)	Relaxation time.
	(C)	Dead time.	(D)	Discharge time.
47 .	The ge	cometry associated with Minkosv	vki s	pace is:
	(A)	Parabolic.	(B)	Hyperbolic.
	(C)	Circular.	(D)	Euclidean.
48.	Laser	printing and Xerox copier works	on t	he principles of :
	(A)	Magnetic lensing.	(B)	Adsorption.
•	(C)	Refraction and reflection.	(D)	Electrostatics.
49.	Which	law signifies conservation of en	ergy	of a thermodynamic system?
	(A)	Zeroth law of thermodynamics		
	(B)	First law of thermodynamics.		
	(C)	Second law of thermodynamics	•	
	(D)	Third law of thermodynamics.		
50 .	The G	amow-Teller selection rules are,	relat	ed to the:
	(A)	Beta decay process.	(B)	Radiative transition in atoms.
	(C)	Dipole selection rules.	(D)	Addition of angular momenta of particles.

Part B

Answer any ten questions. Each question carries 5 marks.

- 51. Describe the various steps involved in a research process.
- 52. Write a note on "Significance of Research".
- 53. Write a short note on Research motivation.
- 54. Explain the qualitative and quantitative research methods.
- 55. What is the basic structure and components of research report writing?
- 56. Discuss the basic component of research paper writing.
- 57. Discuss the basic methodology used for achieving the research objectives.

-

- 58. Write a note on literature review and its purpose.
- 59. Distinguish between Pure and Applied research.
- 60. Explain the difference between interview and questionnaire methods.
- 61. Explain the role of computers in research. Discuss the benefits and limitations of computers.
- 62. How do you differentiate between primary data and secondary data?
- 63. What do you mean by plagiarism? Explain.
- 64. What does double-blind mean? Why is it important?

 $(10 \times 5 = 50 \text{ marks})$