ENTRANCE TEST FOR Ph.D. PROGRAMME, 2023

STATISTICS

773' 773 TT.		
Time : Three Hours		

Maximum: 100 Marks

Part A

Ch

			-	rries 1 mark.
10056	e the cor	rect answer from the choices:		
1.				ter $p \in (0, 1)$ of a discrete distribution. Beta rior when the parent distribution is ———.
2.	(A) (C) Which	Binomial. Geometric. of the following tests is not ba		All of these.
3.	(C)	Kolmogorov-Smirnov test.	(D) timati	χ^2 - goodness of fit test. Watson test. on of the sampling distribution of almost any
	(A) (C)	Bootstrap. Delta.	(B) (D)	EDA. Classical.
4.		SWOR for 10 units from a population of the control		of 100 units, the probability that a specified e sample is ———.
	(A)	1 100.	(B)	1 110.
	(C)	1 90.	(D)	9 10.
5.		distribution functon under H_0 is test with power β satisfies :	s P ₀ u	nder H_1 is P_1 and they are equal, then the MP
		$\alpha \neq \beta$.	(B)	$\alpha > \beta$.

Turn over

12.	Let X_1	Let X_1 , X_2 be a random sample from $U(0,\theta)$, $\theta > 0$. MLE of θ is ———.				
	(A)	$X_1 + X_2$.	(B)	$X_1 X_2$.		
	(C)	$\mathbf{Max}\ \{X_1,X_2\}.$	(D)	Min (X_1X_2) .		
13.	A test	function takes values in ———				
	(A)	(0, ∞).	(B)	(0, 1).		
	(C)	(0, 1].	(D)	[0, 1].		
14.	Let X	follow $N(0, \sigma^2), \sigma > 0$. The fa	mily	of distribution of X has MLR property in		
	•					
	(A)	X.	(B)	X ² .		
:	(C)	- X.	(D)	$-X^2$.		
15.	Let {N	$\mathbb{N}(t), t \ge 0$ be a Poisson process	with	rate λ . Then conditional distribution of $N(t)$		
	given l	N(s) = m, for $s < t$ is:				
	(A)	Poisson.	(B)	Truncate Poisson.		
	(C)	Uniform.	(D)	Binomial.		
				$(\log_e(\mathbf{U}))$		
16.	Let U	~ U (0, 1) and $0 then into$	eger p	part of $\left(\overline{\log_e(1-p)}\right)$ is:		
	(A)	Binomial variate.	(B)	Poisson variate.		
	(C)	Geometric variate.	(D)	Hypergeometric variate.		
17.		and Y be two independent Poiss of the following statements is n		v.s with parameters λ and θ respectively. Then rect ?		
	(A)	$P[X + Y = 5] = e^{-(\lambda + \theta)} (\lambda + \theta)^{5} / 5!$	·			
	(B)	$P[X \le 5 Y \le 20] = \sum_{i=1}^{5} e^{-\lambda} \lambda^{i} / i!$				

 $P[X = 5 | X + Y = 10] = {10 \choose 5} (\lambda \theta)^5 / (\lambda + \theta)^{10}$.

(D) $P[X-Y=5]=e^{-(\lambda-\theta)}(\lambda-\theta)^5/5!$.

(C)

18.		Let X be a normal random variable with mean 1 and variance 1. Define events $E = \{-1 < X < 0\}, F = \{2 < X < 3\}$ and $G = \{0 < X < 2\}$. Then:				
		P[E] = P[F] = P[G]. P[E] = P[G] < P[F].		P[E] = P[F] < P[G]. $P[F] = P[G] = P[E].$		
19.	Let X ₁	, $\boldsymbol{\mathrm{X}}_{2}$, $\boldsymbol{\mathrm{X}}_{3}$ be a random sample fro	m U($(0, \theta)$. Let $\hat{\theta}_{\mathbf{M}}$ represent moment estimator and		
	$\hat{ heta}_{ m L}$ rep	resent the MLE of θ . Then which	ch of t	the following is true ?		
	(A)	$\hat{\boldsymbol{\theta}}_{\mathbf{M}} = \hat{\boldsymbol{\theta}}_{\mathbf{L}}$.	(B)	$\mathbf{E}(\hat{\boldsymbol{\theta}}_{\mathbf{M}}) = \mathbf{E}(\hat{\boldsymbol{\theta}}_{\mathbf{L}}).$		
•	(C)	$MSE(\hat{\theta}_M) >= MSE(\hat{\theta}_L).$	(D)	$MSE(\hat{\theta}_{M}) \leq MSE(\hat{\theta}_{L}).$		
20.	In how	many ways 4 boys and 3 girls o	can be	seated in a row so that they are alternate:		
	(A)	144.	(B)	288.		
	(C)	12.	(D)	256.		
21.	The Je	effreys prior is proportional to t	he :			
	(A)	Underlying pdf.	(B)	Underlyng cdf.		
	(C)	Information matrix.	(D)	Square root of the information matrix.		
22.	of the s	ample space and N_j be the number	er of ol	It $\{S_j, j=1, 2,, m\}$ be a prespecified partition observations failing in S_j . Let P_j be the probability distribution of $Y = \sum_{j=1}^m \frac{(N_j - np_j)^2}{np_j}$ is :		
	(A)	χ^2_{m-1} .	,			
· · · ·	(B)	χ^2_{m-1} . χ^2_{n-1} .				
	# 1	Approaches χ^2_{m-1} , as <i>n</i> increas	ses.			
	(D)	Approaches χ_{n-1}^2 , as n increas	es.			
23.				$\mathbf{g} \mathbf{H}_0: \theta = 1$ against $\mathbf{H}_1: \theta = 0$ based on a single $(x, \theta) = 2(x\theta + 1 - \theta), \ 0 < x < 1, \ \text{is}:$		
	(A)	$\sqrt{\infty}$.	(B)	α.		
	(C)	$\frac{\infty}{2}$.	(D)	2α.		

24. Size of the test is:

- (A) Always greater than or equal to the level of significance.
- (B) Always less than or equal to the level of significance.
- (C) Always equal to the level of significance.
- (D) Some times greater than the level of significance.
- 25. Let $(X, Y) \sim \text{Bivariate normal } (0, 0, \sigma_1^2, \sigma_2^2, \rho)$. Which of the following statements is wrong?
 - (A) X and Y are independent only if $\rho = 0$.
 - (B) X + Y and X Y are independent only if $\rho = 0$.
 - (C) X + Y and X Y are independent only if $\sigma_1^2 = \sigma_2^2$.
 - (D) (X + Y, X Y) is distributed as bivariate normal.
- 26. In a general linear model $y = X\beta + \varepsilon$, ————
 - (A) Any estimable linear parametric function is a linear combination of the functions $X\beta$.
 - (B) If S is a g-inverse of S = X'X then S-y is a least square estimator of β .
 - (C) The coefficient vector of any function belonging to the error space is orthogonal to the rows of X.
 - (D) A least square estimator of β is unbiased for β .
- 27. Which of the following distribution does not being to one-parameter Cramer family of distributions?
 - (A) Double exponential distribution with location θ and scale 1.
 - (B) Double exponential distribution with location 1 and scale θ .
 - (C) Exponential distribution with rate θ and location 1.
 - (D) Poisson distribution.
- 28. Which of the following is true?
 - (A) Unbiased estimator is always consistent.
 - (B) Consistent estimator is always unbiased.
 - (C) Consistent estimator is unique.
 - (D) Maximum Likelihood Estimator (MLE) need not be unbiased.
- 29. If A and B be two events, then which of the following is true?
 - (A) $P(A \cap B) = P(A) P(B)$.
- (B) $P(A \cap B) \ge 1 P(A^c) P(B^c)$.
- (C) $P(A \cup B) > P(A) + P(B)$.
- (D) $P(A \cap B) \le P(A) + P(B) 1$.

30.	Let A	and B be two independent event	s. If I	$P(A) = 1/4$ and $P(B) = 1/3$, then $P(A^{c}/B^{c})$ is:			
	(A)	1/4.	(B)	9/8.			
	(C)	1/12.	(D)	3/4.			
31. Suppose you have a coin with probability 1/4 of getting a head. If you loss the cindependently, then what is the probability of getting at least one head?							
	(A)	1/4.	(B)	7/16.			
	(C)	3/16.	(D)	3/8.			
32.		, ,	_	s for the first time. Let p be the possibility of a mber of tosses required is odd is:			
•	(A)	$\left(\frac{1}{2}\right)^p$.	(B)	<i>p</i> /2.			
	(C)	1/(2-p).	(D)	p.			
33.	If X fo	llows Binomial (n, p) then $n - X$	follo	ws:			
	(A)	Binomial (n, p) .	(B)	Binomial $(n, 1-p)$.			
	(C)	Binomial $(2n, p)$.	(D)	Binomial $(2n, 1-p)$.			
34.	Let X	Let X be a non-negative random variable with distribution function F. Then E(X) is :					
	(A)	$\int_{0}^{\infty} x F(x) dx.$	(B)	$\int_{0}^{\infty} \mathbf{F}(x) dx.$			
	(C)	$\int_{0}^{\infty} x \left[1 - \mathbf{F}(x)\right] dx.$	(D)	$\int_{0}^{\infty} \left[1 - \mathbf{F}(x)\right] dx.$			
35.	Let X l	oe a random variable. Then which	ch of	the following is not always a random variable?			
	(A)	X .	(B)	X ² .			
	(C)	$X^{1/2}$.		$ X ^{1/2}$.			
36.	Let X	and Y be two random variables.	Whi	ch of the following is true ?			
	(A)	E [V(Y X)] = V[E(Y X)] + V(Y)).				
	(B)	E [V(Y X)] = V(Y X).					
	(C)	E [V(Y X)] = V(Y) - V[E(Y X)]	l				
	(D)	$\mathbf{E} [V(Y \mid X)] = V(Y).$	*				
37.	Mode o	Mode of the Chi-square distribution with n d.f. is:					
	(A)	n-2.	(B)	2n.			
	(C)	n.	(D)	n/2.			
	*						

38.	Neyma	an-Pearson lemma is used to fin	dan	nost powerful test for testing			
•	(A)	(A) Simple hypothesis against composite alternative.					
	(B)	oosite alternative.					
	(C)	Composite hypothesis against	simp	le alternative.			
5 - 1	(D)	Simple hypothesis against sim	ple a	lternative.			
39.	Rejecti	ing a null hypothesis when it is	true	?			
	(A)	Type I error.	(B)	Type II error.			
	(C)	No error.	(D)	Simpe error.			
40.	The st	tatistic H under the null hypouted:	othes	is for Kruskal-Wallis test	is approximately		
	(A)	Chi square distribution.	(B)	t-distribution.			
	(C)	F-distribution.	(D)	Normal distribution.			
41.	The di	stribution used in sign test is:					
	(A)	Poisson distribution.	(B)	Uniform distribution.			
	(C)	Binomial distribution.	(D)	Normal distribution.			
42 .	The Ba	ayes estimate of a parameter θ	under	absolute error loss function	is:		
	(A)	Mean of the posterior distribu	tion.				
· .	(B)	Median of the posterior distri	bution	a.			
	(C)	Mode of the posterior distribu	tion.				
	(D)	None of these.	· •				
43.	The m	ultiple correlation coefficient lie	es bet	tween:			
	(A)	0 and ∞ .	(B)	- 1 and 1.			
	(C)	0 and 1.	(D)	-1 and 0.			
44.	Wishar	rt distribution is the multivaria	te ana	alog of:	* .		
	(A)	Normal distribution.	(B)	F Distribution.			
	(C)	t-distribution.	(D)	Chi-square distribution.			
45 .	Distrib	oution of Hotelling's T ² statistics	s is :				
	(A)	F distribution.	(B)	Whishart distribution.			
	(C)	Chi-square distribution	(B)	t distribution			

		~
46.	In a Markov chain a recurrent state i is said to be null recurrent if and only if the me recurrent time μ_i is :	aı
·. · · ·	(A) Zero. (B) One.	
	(C) Infinity. (D) Negative.	
47.	In time series analysis simple average method is used to calculate:	
	(A) Trend values. (B) Seasonal indices.	
	(C) Cyclic variations. (D) All of these.	
48.	Laspeyre's index formula uses the weights of the:	
,	(A) Current year.	
	(B) Base year.	
	(C) Average of the weights over a number of years.	
	(D) None of these.	
49.	Which of the following designs does not apply all the three basic principle of design experiments?	C
	(A) RBD. (B) CRD.	
	(C) LSD. (D) GLSD.	
50 .	Error degrees of freedom for a Graeco Latin square design of size 5 is:	
	(A) 8. (B) 24.	
	(C) 4. (D) 12.	
	$(50 \times 1 = 50 \text{ mar})$	ks
	Part B	
	Answer any ten questions. Each question carries 5 marks.	
51.	Explain one-way and two-way ANOVA.	٠.
52 .	Differentiate between Correlation and Regression analysis.	
53.	What is Chi-square test? Explain its significance in statistical analysis for any resear	·c]
54	Write a note on positive and pagetive correlation	
54.55.	Write a note on positive and negative correlation. What is the relevance of questionnaire in data collection and interpretation?	
56.	What is hypothesis testing? Explain.	
57.	Explain in detail about the different steps involved in developing a research plan.	
58.		
59.	Describe sampling and non-sampling errors.	
	and the contract of the contra	

- 60. What are the characteristics of "Completely Randomized Design"?
- 61. What is the principle behind sample size calculation? Explain the factors while determining the sample size.
- 62. Explain the features of Latin Square Design.
- 63. What do you mean by UMP test? Explain.
- 64. Explain the methods of graphical representation of data.

 $(10 \times 5 = 50 \text{ marks})$